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DYNAMICS OF THE SPACE-TIME CORRELATIONS OF HYDRODYNAMIC FIELDS IN
NON-STATIONARY GAS FLOWS®

O.A. GRECHANNYI and V.V. TOKARCHUK

The Chapman-Enskog (CE) method of solving kinetic equations for the long-
wave parts of the dual correlation functions of a nen-equilibrium gas is
developed. Closed systems of hydrodynamic equations are obtained,
describing the dynamics of the space-time correlations of the large-scale
hydrodynamic field fluctuations in non-stationary gas flows,

Twe methods exist for constructing the basic hydrodynamic equations for the spatial
correlations of fluctuations, based on kinetic theory. The first approach uses the kinetic
stochastic equation for the fluctuations in the phase macrodensity of the one-particle states
/1=3/. The CE method is used to cbtain from it /4/ a closed system of equations for the
fluctuations in the hydrodynamic fields with extraneous sources, whose correlations generalize
the Landau-Lifshitz formula to embrace the range of non-equilibrium, but stable states of gas.
The stochastic eguations of hydrodynamics /4/ can, in principle, be used to obtain the equations
describing the dynamics of the spatial correlations of the fluctuations of the hydrodynamic
fields. The problem, arising in this case, of consecutive separation into terms of small ang
large scale spatial correlations is very complex and cumbersome in practice. The cther approach
based directly on the equations for dual correlation functions in a one-particle phase space
/5, 6/ is found to be more effective. Thus the method of projection operators /5/ is used to
construct a closed system of eqguations feor the simultaneous spatial correlators of the hydroe-
dynamic field fluctuations in inhomogeneous stationary states of a gas. Analogous equations
were obtained in /6/ using the phenomenclegical approach.

The most important information concerning the character of the spatial statistical rela-
tions in laminar gas flows is contained in the relations describing the dependence of the
inhomogeneous terms in the equations for the simultaneous spatial hydrodynamic correlators on
the mean values of the thermodynamic forces representing the “heat sources” of the large-scale
hydrodynamic correlations, The simplest linear terms of such a relation were computed in
/5, 6/, and described incompletely the generation of spatial correlations in the non-isothermal
flows of a compressible gas.

The purpose of this paper is to develop the CE method further in order to obtain the
nydrodynamic asymptotic expression for the lcng-wave components of the dual correlation func-
tions of the non-eguilibrium gas, and tc use them to construct a closed system of equations of
dynamics for the space-time correlation functions of the fluctuations in the hydrodvnamic
fields. The two-point hydrodynamic eguaticons obtained below for the space-time correlations
are suitable, unlike the eguations of /5, 6/, for studying thermal ncise in unsteady compress-
ible gas flows, and take intc account the linear relations, as well as relations that are non-
linear with respect to the gradients, describing the dependence of the "sources" of long-wave
correlations on the mean values of the thermodynamic forces. The formal structure of the
method developed here is universzl in the sense that if the sclution of the kinetic equation
for the mean value of the corresponding phase macrodensity is knowr, then the solution of the
kinetic equation for the long-wave part of the corresponding correlation function and the
expiicit form of the "source" terms in two-point hydrodynamic equations can be written down at
once.

1. Initial kinetic equations and formulation of the problem. <iet us consider
a2 simple, one-component, non-equilibrium gas. Let f(f. z} and &f (¢, z) denote the mean value
ahd fluctuations of the phase macrodensity of one-particle states 7z = (r, ). Then the mean value
@, (t,7) and the fluctuations &P, ({,r)(p =0, 1,..., 4 of the hydrodynamic variables are given
by the formulas

@ut, ry={dv¥y (6, )it 1) 6Dt r) = (dey, (¢ 2) 61 (2, 2) (1.1)
Yo=m ¥ =v'n ¥ =m@ — u)i(2n) (1.2
Yo=m, ¢y = (0 — ) n, §4 = Im{r — u)¥2 —¢eln {1.3)
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(}1=0,1,.‘.,4; k=1‘2‘3; n:p/m)

Here @, = p, O, = uy, k=1,2,3, ®,= e = 3kzgT/2 are the mean values of the mass density, hydre-
dynamic velocity components and heat energy density, 6@, = 8p, 8@, = 6uy, £ =1, 2, 3, §0, = b¢ =
3kyT/2 are the fluctuations in the corresponding physical quantities, m i1s the mass of a
single molecule, v is its velocity vector and kg is Boltzmann's constant.

We know /1, 3/ that the one- and two-time correlations of the phase macrodensity can be
written in the form

<6f (ti xl) 6f (ta I2)> =6 (Il - IZ) f (tn Il) -+ £ (te I3, IZ) (14)
Oft+71, a)8flt, > =F{+r1, 2,8, 7y + 6@ + 1, (1.5)
R 12)

The distribution function f and the long-wave part of the dual correlation functicn g are
given by the equatioms

Kn (5 = )i (6 )= T [F(0). 1 (&) 2] (1.6)
Kn (’ST"" 2 lIi )g(fy Iy 12)= Z J’ [f(f), Zi]g(t; Z1: 12)—’— (1_7)
i=1,2 i=1,2

Sy —r)I[f() 1(t); a1s 22}y =0V L E._;U_

Here JIf, f; 2] and J'lf; z] denote the Boltzmann collision integral and its linearized
operator. The functions F and G represent the two-time one-particle and two-time two-particle
correlation functions. They satisfy the conditions

Flt,apdoa) = 0 (o, — o) Foxy), G (1 s 8, 1) = g (1, 7). I2) (1.8:;

and the linearized Boltzmann egquatien, especially
Kn —;;— =l Gt — T an b o) =T [f(t ~ 1) 53} Gt — T 213 L Z2) (1.9)

The Knudsen parameter Kn is introduced intc the kinetic eguations (1.6, (1.7), (1.9, tc
fix the order cf magnitude cf the separate terms at the hydrodynamic state oI the evclution of

the gaseous systemn.
FProm (1.1), (1.4} and (1.5 it follows that the correlation functicns cf the fluctuaticns

in the hvdrodynamic fields conszst cf two terrs

LAt r) M1 ro) =au (0 ry oy — bl T ) {1.:10;
<6CDH (f — T, rlj o (1. r_,)'; = Uy~ (f — T.r3. 1 rg) - ﬁil" (=1 i 1) (1,113

(u. v =0, 1, .. .. 4 deterzined by the forrulas
a(tory r)=058{(rn— r-z,J.\'dzau’,, (o r)fllora vy F (1 1) (1.12)

bynft. ry ra) = :\‘dr, duayy [t ) (1 22) gt 11 12)
a{t =Tt )=
gdta dusu (0 — T o) (a2} F(t — T2yt L 1)

Buv(t —1omit )= Kdl'l Arayp (¢ — T2 2§t 22) G (1 — T 200 8 1)

virtue o 1.7, the ccnditicons

Gt r o) = apa (o rore)e Bun(t ri fore = by (B T ) (1,130
The terms by ancé Pyv appearing in expressions (1.10) and (1,11} fcr the hydredynamic
correlators, vanisn whern the state of thermodynamic equilibrium obtains. The terms 4, and

ayy determine the spatially §-correlated part of the fluctuations descriking the behaviour
of the small-scale therma. fluctuations which dc nct varnish when the state of thermodynamic
equilibrium obtains. They are studied in /7, B/ for the case of a non=equilibrium gas.

The correlators b,y ané P, contain the most interesting informatiocn concerning the
statistical properties of the non-eguilibrium fluctuations in gas flows. They accecunt for the
large-scale fluctuations with a large correlation radius, existing only in nen-egquilibrium
systems, and describe the long-wave statistical relations ensuring the presence of a fine, space-
time statistical structure in the inhomogenecus flows. Namely, the part J§,» of the correlation
function (1.10) determines the influence of the lazge-scale fluctuations on the flow and the
heat transfer in the gas /9/, éue to the effects of meclar transport. Moreover, it was shown
in /10/ that the parzs by and Py of the hydrodynamic correlators acccunt for the most
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characteristic features of the hydrodynamic fluctuations near the threshold of the convective
stability of the flow. Namely, when the flow parameters approach their critical values
corresponding to the loss of stability, the intensity of the spatial correlations and their
radius both increases anomalously. We note that here the components a,, of the part of (1.10)
have no singularities, and retain the order of magnitude of the quantity characterizing the
thermal equilibrium noise level /8/, therefore they can be neglected in the neighbourhood of
the critical non-eguilibrium point.

We obtain the dynamic equations for the correlators byy and Py from the coupled
systems of eguations (1.6), (1.7) and (1.6), (1.9), and here we must consider the expanded
sets of hydrodynamic variables ®,, b, (u,v=20,1,...,4) for (1.6), (1.7) and Dy, Buv (u, v =
0,1,...,4) for (1.6), (1.9). Then the classes of normal solutions of equations (1.6}, (1.7),
(1.9) describing the hydrodynamic stage of evolution of the gas will have the form

f(@, 2)=F1D(); z], g (t. 70, 23) = g (D (t), b(t); z;, z3) (1.14)
Gt +1, 25t 1) = [d)(t+1: Bt + 1, t); 2y, 2,

2. Hydrodynamic asymptotic form of the long-wave parts of the paired
correlation functions. wWe shall consider a class of normal solutions of (1.6), (1.7),
asymptotic as Kn —» 0, of the form

f= 2 (K)o (D (1): 2], g= S (Kn)" g [® (1) b(t): 210 22] (2.1
n=0

n=0q

In accordance with the scheme cf the CE method we introduce the formal expansion cf the
time derivative into Egs.(1.6), (1.7)
c 03
._d_— W Ll 9
at _2 \n) at (2.2)

and restrict the class of functions (2.1) by imposing the conditions of ncn-expandability of
the hydrodynamic variables @ and b :

deq'.ufm) = 8neP- Sdl’l dvg¥y (1) Yo (72) g™ = brobyv (2.3)
The hydrodynamic equations for @ ané b obtained with help of such sclutions ¢f the
kinetic eguations (1.6}, (1.7), have the fcllowing form in the N-th approximation:
~
5 . G a( } .
<=3 (knr S0, ,H~Z<I\ " 2 by (2.4
n=g

Explicit expressions for @™/t anc J™b'dl are obtained from the conditions cf sciv-
ability of the eguations for f™*1! and gi"1 respectively.

We shall limit ourselves to constructing the first twe approximations tc the function g
using known results /ll/ of solving Boltzmann's ecuation (1.6) by the CE method. Let us
intrcduce the notation 60Q, (1. r)'dat = 6,7 [® (1): r]. We shall write the Navier-Stckes equations
in the form

L) = A [ (1), r] =00 [D () r] — 6] [B1); r) (2.5)

Substituting (2.1) anéd (2.2 intc (1.7), we cobtain the eguations fcr the first three
approximations tc the Furct*c g

JPes ) g0 =0 (2.6)
i=1.2
y d((») Z
J[fo: x qm____g(o\ J[fD; 2] g0 — (2.7)
=N =
8(ry— ro) I [F0, f = j1, fO]
, a” F L) ,
2T Ii]g‘”-—-—%,—g“‘——g‘”-— Z (J [0 z;] g ~ (2.8)
i=1. 2 i=1, 2
JUI®; 2,]89) — 6iry — o) T[]0, &+ @, jO)  f), 0]
(d/dt = 09,6t — 1, + 1)

w

The conditions of solvability of (2.7; and (2.8) (the orthogonality of their right sides
with respect to the phase subspace stretched over the complete system (1.3) of the additive
collision invariants) uniquely define the form of the first two terms on the right sides of
Egs. (2.4) for b. We note here that since the right-hand side of (1.7) is not orthogonal tc
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the phase subspace stretched over the additive collision invariants, the resulting equation
fN+D of the (N + 1)-th approxi-

for b in the N-th approximation is found to be dependent on
mation to the solution of Boltzmann's equation.
The following function represents a solution of (2.6) satisfying condition {2.3) at n = (¢
0}
B I — (b 3f©@, dof@) (2.9)

4
. o 819, 1)
{0 = | 3
g0t oz = 37 {ard drabus 6 i) 3O N B, )
Bov=0
Here we denote by dg the functional derivative &68®, (¢, r), and the symbol (-; -,-) denotes
the inner product of the functions within the brackets.
; Before attempting to solve (2.7), we shall obtain an expression for d&;Pg®ds. It can be
shown that
4'e ‘[ 5@ ) Y
g0 e ( b— (B0 b -~ [8(0)'.1,]*)}.; Fofo, 5®'f(0)) + (2.4

—ar 1737
(b; B J" [10] fD. Gof®) — (b; Bof®), Bgd" [f01] f11)

Indeed, taking into account relation (2.9) we can write
.15

4" o (ém, ) {© [ 2% {0 1]
—_— s P g L PO oY o
e = | S @i | €+ (S b ! .t%,f(m)-*f (e 1)

Taking intc account the fact that the hydrodynamic variables @ and b are independent,

and also the egquations
0 A B
¢ 0 4 .4 { v
1= G $1g [ 1 = (@) /O
we can confirm the validity of the relation
’ &(0\ it r/ 5’0‘* N
(b6 T 106010 |~ [ 0100 5g = 10| = (2.12)

ot
(A1 b ,;ofv’o;A 6<foo‘) - (I@w"" bl ﬁ@fw\’ %Jvm) - (6(0); Og) g(o)
for the linearized Euler operator whose components

Here we have usecd tensor notation 8¢
are given by the formula
G gy = Sa’r"¢ {ry 86 (D1 r] 80, () (2.13
0, % .5 and [0 .b]* are tenscrs with components 61, [ nlby, (4 1, and 8, (O r
and the repeated index o denotes summation from O teo 4.

n =

where
it follows that
(6'Pd at,

by oy Tg where p.y=4u.1...., 4
From the eguation for V' /ii/
GOt = =L = 2 Y
The resulting expression will yield an expression for
a result we obtain (2.10).
to be solvable has the

(2.11). BAs a

The condition for (2.7)

Let us usge it in (Z.12}.
then be substituted into

to calcuiate §0h 4t
{2.1%)

i 89 which will
we shall use (z.1C°
forn
20
. ) o d, o . -
VAvy deaty (o) g (2} =g = Lv{ry re)==
8 — ro) S duy dvgyy (1) e (22) T [FOL [0 — fi1, fO0 24, 23]
tc it is given by the terms contained withint the first
fact that

Taking intc account the

The on.y non-zerc cont
round brackets on the right-hand side of {(2.10}.
er¢u6®vﬁm = §,,, we obtain

A0b 81 = O, (A% ry] oy — OLL [D; rol by = LN (2.15)
Let us substitute {(2.15) intc (2,10) and use the equation
bad (10110 = J (1] dof — ' [/V) Gof®
(2.16)

Cancellinc the like terms we obtain
do@g® dt = J' [ 21] (b: B (1), Ff® (22)) +

J {195 2] (B; O0f 9 (1), Baft? (x2)) +
Y [/ 2,) g® (LY; 811, e f®)

P

i=1.
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Taking into account (2.16), we transform (2.7) into
T 1195 23] {8 — (b: o™, Gof¥) + ' [; 22] X (2.17)
(W — (b; 0o, g fM)} = M (t, 21, T,) =
(LW); 3 f @), Bt @) — 8 (ry — ro) I [fO, fO + fO, fO, 1., 7]

Its solution, satisfying conditions (2.3) at n =1, has the form

gW = (b, dpf®), 8pf®) + (b; Iof®, dof®) 4 g (2.18)
where g® (i, z,, ;) is given by the equation
' 105 2] + T 1f9; z]) g = M (8, 21, z3) (2.19)

Let us now compute the second term on the right-hand side of Eq.(2.4) for b. We use the
condition for (2.8) to be solvable
40 (1)
§ s dvsty (@) ¥ (22 [Grew + 37 g‘m] =L® ()= (2.20)

8(ry—r) dex duaty (1) $v (22) T [, f@ 1 1O, fO {0, fBI}

Taking into account (2.9), (2.18) and the equation given in /11/ for the second approxi-
mation f® to the solution of Boltzmann's equation by the CE method, and carrying out trans-
formations analogous to those used in derivirng (2.10), we can obtain

(0) )
e ({—6(7 b— (0w b+ [@m'-bm}; 00f®; 0of®) + @21

Z 1, g0 = (80, 3g) gh" L (LO); gf®), dgf ) L.

i=1,2

(L™ 9gf®, oft) — Z T [ 2,] {(b; Bof ), Bgf®) +

i=1,2

(6001, 60l = 3| J'[10; 2] g

i=l1,2

Let us substitute (2.21) intc (2.20). Wher computing the integrals over the velocity
space, we must take intc account the relations

S Ay (2) O, =0, { duy duny (22) s (22) g =0

which feollow froem (2.3), and use the fact that 4, are the eigenfunctions of the operator
J'[f®] corresponding tc the fivefold degenerate zerc eigenvalue. Here the non-zero contribu-

tiern tc (2.20) is made by the frist three terms of (2,21}, As a result we obtain
OWbyy 101 = ) [D; 1) bay + OV [@;72) bua = T (ra ) + (2.22)
Iy (rors) + LA (rar)
Ily(rr)=— S dvy duey (21) Yo (22) v1- V1 g0 (2.23)
The formulas (2.9), (2.18) together with (2,4) with N =1 for b, (2.15), (2.22) ané the
Navier-Stokes equations (2.5) together determine the required class of normal solutions of the
kinetic equations (1.6), (1.7} in the first-order perturbation theory using the CE method.

The system of hydrodynamic equations for the spatial correlators buv (I, ry, 12), in this approxi-
mation, takes the form

Obuy 9t — Ay o [©; 1] bay ~— Ay, o [@; 2] bya = Hyw [; 711 1] (2.24)
Hyy(rior) =T (rire) + TP, (rs re) + L& (r1s ra) + L (ras ra) (2.25)

It represents a system of "twe-peint" linearized inhomogenecus Navier-Stokes equations
with the source terms Huv on the right-hand sides. In accordance with (2.25) , (2.14), (2.20),
(2.23) and (2.19), the terms depend on the special features of the small scale motions in an
inhomogeneous gas, and vanish in the case of spatially homogeneous systems. In the latter
case the trivial solutions of (2.24) are the only ones with any physical meaning. 1In the case
of inhomogeneous systems the functions Hy, represent heat sources of the hydrodynamic correla-
tions. It should be noted that in the case of stationary states of an inhomogeneous gas Egs.
(2.24) differ from the corresponding equations of /5, 6/ in the structure of the inhomogeneous
terms. In /5, 6/ the terms [I'® and L® appearing in (2.25) are not taken into account.
They determine the sources of correlations representing special interest in the study of the
fluctuations in the non-isothermal flows of a compressible gas.

The problem of constructing the normal sclutions of (1.6), (1.9) of the form
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o

Gt + 1,213 ¢, 22) =»§o (Kn)"G™[®(t + 1), B (t + T» 1); 21, o) (2.26)

represents formally a special case of the problem discussed above. Its CE solution in the

first-order perturbation theory can be written at once, taking the results obtained into
account, as follows:

G=B(t—1,1); Opu-nfO @ + T, 23) Douf® (f, 22)) + (B (¢ -+ 1:2); Opg-of D (t + T 21} Baf@ (, 22))  (2.27)

At the same time, the equations of dynamics of the two-line hydrodynamic correlators §
are identical with the linearized Navier-Stokes-Fourier equations

/Ot + 1, 15 1, ) —Bu QE F+ 1) B s (2.28)
2, r2)=0

whose solutions should be considered, by virtue of (1.13), with the initial conditions determined
by the solutiens of (2.24), (2.5). Thus the Onsager principle determining the secular behaviour
of the fluctuations in the macroscopic variables in an equilibrium system, can be generalized
direclty to the domain of non-egquilibrium, non-stationary, but stable hydrodynamic states of
gaseous systems.

3. Computation of the sources of long-wave correlations in Egs.(2.24). Let
us consider the functional dependence of the inhomogeneous terms in Egs.(2,24) on the mean

values cf the hydrodynamic fields. To do this, we first express them in terms of the integral
brackets traditional in kinetic theory /11/.

Let us consider expression (2.23). Taking into account (2.3), we can reduce it to the
form (repeated Latin indices denote summation from 1 to 3)

s __ @ > ) - i a R .
Tw'v(fh F?)—?’;Ap,uv-—6u{5;.1\~m-—5r—;;n(rl}7— (3”

: é L 18
bus {A P Gy ()= By w5y T, " (’1)}
Ko ww(ryro)=— S duy dvaty (21) ¥y (T2) €18y €1p == U1 — U (r) (3.2)

The explicit form of the function g9 is not required in computing the integrals (3.2).
We shall show this as follows. Consider its equation {2.19). Multiplying both sides by
Yy (72) and integrating over 1, we obtain

§ v (a0 g0 = { dvaty (20) (7" (10 2]y (3.3)
{(L8%; 0g® (21), B[ (12)) —
8 (ry— ra) T [79 f8) = 0, fO; 20, 2,1}
both sides of this eguation by [ley\u (%) — 6,%6,,/(3n) —kpTeybus'nl and
The second ané third term or the left-hand side both vanish, and the

2. Takirg intc account on the right-hand side cf (3.3} the selfconjugate
r (J'[fel, we use the relation

Let us multiply
integrate it over i
first texm yields (3
nature of the cperat

o)

[ 2 kgl
(J et { ey — = Sy — 2 cpf)m} -

kpT |y :
- fz El—m'” Byiby: + ‘41/6;‘&; .
(= = (Y e (o — )
, - 1
By=— ‘,-72‘7‘ (et (sz: “*‘*g‘czém))

remembering alsc the condition of nen-expandability of the hydrodynamic variables. It cah be
shown here that all terms containing L® vanish., As a result we obtain

kgT
27§ duy duay (20) %

{":T{' B, (21) by — Ay (1) 6,.‘} T[fO, f0) o f@, fO), 7, 24]

Introducing the definiticn of the modified integral brackets for the three arbitrary
phase functions R (v), H (¥), 6 ()

Kp, Uy (7'1, r?) == 6 (rl — 72)

[RiH,G* =— = S duiR (@) ] [fOH, [O6 + fOG, fOH] == (3.4)

n*

~ oz § dvidva () 6 (0) T[4 fOR -+ fOR, fO; 23, 23]

n?
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we can write this expression in the form
Ko, o (r1yra) = 8 (s — ra) kaT {8t [49% By WI* + @.5)
Suc K0 Ay ]*}, B = ffO
We transform expressions (2.14) and (2.20) for LW and L®, using the formula
§ dvs dva () ¥ (20) 111 £ 200 2] = —S Qo (20) W (20) T [1: £ 2]

which follows from formula (1.3) of /4/, and taking into account the definition of the standard
integral bracket /11/

[H;H]_———deﬂ(v)l’ [f; z} fOR (v) (3.6)
As a result we obtain
L (ras ra) = 6 (ra — ra) m® [ 4] (.7
LI (r1y )= 8 s — )t {[; ] + - [Vt A, O]
R = f@)/0

Thus, further calculations can be carried using the methods employed in computing the
integral brackets /11/ developed thoroughly in the kinetic theory of gases. Omitting the
details, we shall give the results of these calculations, restricting ourselves for simplicity
to the first terms of the expansions of the function defining AW and A® in terms of Sonin
polynomials (a Maxwell gas). Some of the components of the temsors (3.5), (3.7) are equal to
zero in this approximation. The non-zero components have the form

pzo(rnrz)”'ﬁ(ﬁ—rz)—-pph Kp.co(’h’2)=5(’1—"2)—:'-qg) (3.8)
K. 1p(r1 fz)——é(fx—fz)—TEfo?)
0)
L;‘;‘x‘(ﬁsrﬂ):é(ﬁ ’z) prn PSI)’ (3-9)
kpp'®
LLI,) (rl,r-z)=6(r1-—r»)7_sT g)
LE (ryra)=08(ri—ry) ;’nn 258 (3.10)
kop'® ,
L;?‘)(rh "n)=6 rl—rg)—::———-—Ep ®

pna ¥
Lu ("1' ro)=106( rl—"“)_ JLABT (vapul - qug)) —
— q,])" 2O - mgE, ~ —/.Bq“’V T}

PO =nksl, PR =—20EiVu, ¢V=—iv,T
t : i
Ef =13 (8,6, + 6,48,,) — 17561,6,,
Here 1, are the coefficient of viscosity and thermal conductivity P,® and 9,9 are

the Barnett complements to the tangential stress tensor and thermal flux /11/, §, is the
Kronecker delta.

From formulas (2.5), (3.1) and (3.8), (3.9), (3.10) it follows that the intensity of the
thermal sources of long-wave correlations in the gas increase as its non-eguilibrium character
increases. The terms (3.9) in (2.25) are of zero order of magnitude relative to the Knudsen
number, (3.1), (3.8) and (3.10) are of the first order. Formulas (3.10) describe the contribu-
tion of the terms of the Barnett approximation for the mean values of thermodynamic fluxes,
to the correlation sources. In the case of flows described satisfactorily by the Navier-
Stokes-Fourier equations, these terms can be neglected in (2,25). Here we have

Pm el L 3.11)

‘w (riyrg) = 6up6v16 (r1— r2)
ma\m] 8 (rl - "2) —n‘ Pgl)vpul : [éutﬁvr -+ ﬁuréw] 6 (r1— l'z) X

1 [ 5 kgp'® 41 oypr

T[T‘%‘f— (1) -+ ____q(l) ,',V,up] +

[ Suobvi sy 7 Vap + Bubw iy n(,) Vip] 8(r —ra)mgl +
[Guoﬁvp woy vut 5u95w = (, Vu] 8(ri—ra) PR +

8- [m "yt n(r) Vz:] 8 (ry -—"2)—5'-‘Ertl>9m



448

Equations (2.24) with inhomogeneous terms (3.11) do not contain any nen-equilibrium para-
meters which characterize only the gaseous systems. Therefore they can be used to study non-
eguilibrium, large-scale fluctuations in fluid flows.
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ASYMPTOTIC FORM OF SMALL DENSITY DIFFERENCES IN THE PROBLEM
OF COHERENT PHASE TRANSFORMATIONS”

M.A. GRIKFEL'D

Equations describing {in the lower approximation! the equilibrium con-
figurations under heterogeneous, coherent phase transformations in an
elastic, one-ccmponent medium, are derived for the asvmptotic case of small
density differences. Both phases are assumed to be isotropic by virtue of
the multiplicity and certain computational simplifications. It is shown
that, to a first approxiration, the equilibrium temperature of the non-
hydrostatic, two-phase configuration is identical with the temperature of
phase equilibriurm of the hydrostatically stressed phases in some reference
configuraticn. 1In & higher approximation the system of equations of
equilibrium obtained is identical with the equations of the classical
linear theory of elasticity, although, on the whole, the problem remains
essentially non-linear, since it contains an unknown boundary and certain
boundary conditions on it, quadratic with respect to the displacement.

The conditions obtained are further used to find the scolutions of certain
boundary value problems.

The conditions of equilibrium obtained in /1, 2/ under cocherent phase transformations
with slippage, represent special boundary value problems for the equations of the non-linear
theory of elasticity, with unknown boundaries. The presence of unknown boundaries of contact
between the different phases aggravates the difficulties of the already complicated problem
of describing the equilibrium configurations of non-linearly elastic materials (e.g. in the
simplest problem of this type for a liquid system where the problem reduces to that of o
determining the eqguilibrium values of the pressures, temperture and phase masses, the equilibrium
*prikl.Matem.Mekhan.,49,4,582-592,1985




