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DYN~I&S OF THE SPACE-TIME CORRECTIONS OF ~YDRODYN~IC FIELDS IN 
EON-STATIONARY GAS FLOWS* 

O.A. GPJXBANNYI and V.V. TOKARCBUK 

The Chapman-Enskog (CE) method of solving kinetic equations for the long- 
wave parts of the dual correlation functions of a non-equilibrium gas is 
developed. Closed systems of hydrodynamic equations are obtained, 
describing the dynamics of the space-time correlations of the large-scale 
hydrodynamic field fluctuations in non-stationam gas flows. 

Two methods exist for constructing the basic hydrodynamic equations for the spatial 
correlations of fluctuations, based on kinetic theory. The first approach uses the kinetic 
stochastic equation for the fluctuations in the phase macrodensity of the one-particle states 
/l-3/. The CE method is used to obtain from it 14/ a closed system of equations for the 
fluctuations in the hydrodynamic fields with extraneous sources, whose correlations generalize 
the Landau-Lifshitz formula to embrace the range of non-equilibrium, but stable states of gas. 
The stochastic equations of hydrodynamics /4/ can, in principle, be used to obtain the equations 
describing the dynamics of the spatial correlations of the fluctuations of the hydrodynamic 
fields. The problem, arising in this case, of consecutive separation into terms of small and 
large scale spatial correlations is very complex and cumbersome in practice. The other approach 
based directly on the equati ons for dual correlation functions in a one-particle phase space 
/5, 6/ is found to be more effective. Thus the method of projection operators /5/ is used to 
construct a closed system of equations fcr the simu1taneo.z spatial correlators of the hydro- 
dynamic field fluctuations in inhomogeneous stationary states of a gas. Analogous equations 
were obtained in /6/ using the phenomenological approach. 

The most important information concerning the character of the spatial statistical rela- 
tions in laminar gas flows is contained in the relations describing the dependence of the 
inhomogeneous terms in the equations for the simultaneous spatial hydrodynamic correlators on 
the mean values of the thermodynaric forces representing the "heat sources" of the large-scale 
hydrodynamic correlations. The simplest linear terms of such a relation were computed in 
/5, 6/, and described incompletely the generation of spatial correlations in the non-isothermal 
flows of a compressible gas. 

The purpose of this paper is to develcp the Cir' method further in order to obtain the 
hydrodynamic asymptotic expression for the lcng-rave compcaents of the dual correlation func- 
tions of the non-equilibrium gas, and tc use them to construct a closed system of equations of 
dynamics for the space-time correiation functions cf the fluctuaticns in the hydrodynamic 
fields. The two-point hydrodynamic eq;iaticns obtalned below for the space-time correlations 
are suitable, unlike the equations of /5, 6/, for studying thermal noise in unsteady compress- 
ible gas flows, and ta1k.e intc account the linear relations, as well as relations that are non- 
lrnear with respect to ths gradients, describing the dependence of the "sources" of long-wave 
correlations on the mean values of the thermodynamic forces. The formal structure of the 
method developed here is ;miversal in the sense that if the sclution of the kinetic equation 
for the mean value of the corresponding phase macrodensity is known, then the sol?;tion of the 
kinetic equation for the iong-wave part of the corresponding correlation function and the 
explicit form of the "so~urce" terms in two-point hydrodynamic equations can be written down at 
once. 

1. Initial kinetic equations and formulation of the problem, Let us consider 
a SiK:ple, one-component, non-equilibrium gas. Let fil. r) and 61(t,s) denote the mean value 
a&dfluctuaticnsof the phase macrodensity cf one-particle states x = (r,n). Then the mean value 
@,,((t,r) and the fluctuations saW((t,r)(p = 0. 1,..., 4) of the hydrodynamic variables are given 
by the formuias 

cP,(t, r)= @Y",(iJ)i(f%Z), @-&,(t. r)=@J-,,(t, z)&(t,r) (1.1) 

Y" = m, W* = &in, Y‘ = m (1. - a)2,(2n) (1.21 

*i'o = m. vir = (Q - ur)‘n, $( = Im fr - u)*Q - cJ,:n 11.31 

*Prikl.tiatem.Mekhan.,49,4,572-581,198s 
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(p = 0, 1, . ., 4; k = 1, 2, 3; R = p/m) 

Here O. = p, Q. = uk, k = 1, 2, 3, @r= e = 3k~T!2 are tie mean values of the mass density, hydro- 
dynamic velocity components and heat energy density, 60, = 6p, &Dk = 6Uk, k = 1, 2, 3, m, = & = 
3k~TT,‘2 are the fluctuations in the corresponding physical quantities, m 1s the mass of a 
single molecule, L‘ is its velocity vector and k jj is Bolttmann's constant. 

We know /1, 3/ that the one- and two-time correlations of the phase macrodensity can be 
written in the form 

The distribution function f and the long-wave part of the dual correlation functicn g are 

given by the equations 

lin(~-I,)l(t,x)=i'lf(I).f(f);il (1.6) 

Here Jlf,f;zl and 1’ If; rl denote the Boltzmann collision integral and its linearized 

operator. The functions P and G represent the two-time one-particle and two-time two-particle 

correlation functions. They satisfy the conditicns 

f (f, 1,: 2. x2) T 6 (I, - I~, j(i. I~), G (1. xl; t. x2) = p (1. z,. J!) i1.E 

and the linearized 3oltzmann eqcaticn, especially 

kn~~-~I,~G(~-~.~~:~.~:)=J'[~(t-~).a,]G(~-r-x~;1,r~) (1.5) 

The Knudsen parameter lin is Introduced intc the kinetic equations (1.6.) (1.71, C1.3, to 

fix the order of magnitude c f the separate terms at the hydrodynamic state of the evolution of 

the gaseous system. 
From (l.l), Cl.41 and lL.5) it follows that the correlation functlcns cf the il;ctcaticns 

in the hydrodynamic fields cons:St cf two tcrrs 

{cm, (t* ?,)M', it. r?), = ONi\ i!. rl, r.j - ?I,,,(!. r,. h) tl.lC: 

{HDi, (f - i. rl)m, [i. r:)‘ =c+(I - T. r,. I. TP) - pr,(t -- T. 71; I. r.') tI..li: 

(u. Y = 0. f, I. 4) deterAnt L; +-i,e fcr;.L:as 

fic,~(r-,.rl r,r?)= dt.,d~,?~‘,(t~~.~I)~,if.~I?)G(:-~.x,:f -r:,I .c 
ar,d sat;sPy, ?;y vLrt3e cf 1." , t3;E m:dlt’srs 

tlpy-(r. rl. c. rnj = o,,, it. .?I. 7:). pll, (I. 7,: I. r*j= b,, (t. ~1, ‘2) L.15 

The terns bvy and b,,, appearing in expresclons (1.10) and il.ll! fcr the hydrodyncmlc 

correlators, vanish when the State of thermodynamic equilibrium obtains. The terms %i ar.8 

aUv determine the spatlall\ _' 6-correlated part of the flactuatlans descriting the behaviour 

of the Small-Scaie therma: fluctuations which dc net var.ish when the state of thermodynanrc 

equilihrium obtains. They are studied in /7, B/' for th e case of a non-equilibrium gas. 

The correlators b,,Y a26 F,Y contain the most interesting information concerning the 

Statistical properties of the ncn-eqcilibriuzr fluctuations in gas flows. They acco'unt for the 

large-scale fluctuations vith a large correlation radius, existing only in non-equilibriw 

systems, 2nd describe the long-wave statistical relations ensuring the presence of a fine, space- 

t-me Statistical Structure in the inhcmogenecus flows. Namely, the part b,,- of the correlation 

function (1.103 determlnes the ir.fluence of the large-scale fluctuations on the flow and the 

heat transfer in Zhe gria ./9/, dx to The effects of mclar transport. Moreol'er, it was shcwr. 

in /lo/ that the parrs t,, an? fi,, of the hydrodynamic correlators account for the most 
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characteristic features of the hydrodynamic fluctuations near the threshold of the convective 
stability of the flow. Namely, when the flow parameters approach their critical values 
corresponding to the loss of stability, the intensity of the spatial correlations and their 
radius both increases anomalously. We note that here the components upy of the part of (1.10) 
have no singularities, and retain the order of magnitude of the quantity characterizing the 
thermal equilibrium noise level /a/, therefore they can be neglected in the neighbourhood of 
the critical non-equilibrium point. 

We obtain the dynamic equations for the correlators bp and b&v from the coupled 
systems of equations (1.6), (1.7) and (1.6), (1.9), and here we must consider the expanded 
sets of hydrodynamic variables au, b,, (p, 7 = 0, 1 4) for (1.6)) (1.7) and UJ,,, prv (p, v = 
0, I,..., 4) for (1.6)) (1.9). Then the classes of nor& solutions of equations (1.61, (1.7), 
(1.9) describing the hydrodynamic stage of evolution of the gas will have the form 

f (t, z) = f IQ, (t); I], g (f. 11, q) = g IQ (t), b (1); qr .221 (1.14) 

G (t -+ ‘I, 21. . t, 52) = G 10 (t + T), fJ (t + T, t); tlr 221 

2. Hydrodynamic asymptotic form of the long-wave parts of the paired 
correlation functions. We shall consider a class of normal solutions of (1.6), (1.7), 
asymptotic as kn+O, of the form 

f =,,~~(Kn)"f'"'[a,(1): I]. g = ,,$Rn)"g(n) [a,(1), b(t); 31, Q] (2.1) 

In accordance with the scheme cf the CE method we introduce the fcrmal expansion cf the 
time derivative into Eqs.(1.6!, (1.7) 

OF 
b 

xi= 
2 

(Kn)Tl g (2.2) 
n=0 

and restrict the class of functions i2 .1) by imposing the conditions of ncn-expandability of 
the hydrodynamic variables 0 and b 

The hydrodynamic equations for 0 ant S obtained with help of such sclutions cf the 
kinetic equations ii.6), (1.7!, have the fcl1ob:ir.c form in the N-th approximation: 

(2.3) 

(2.4' 

Exp;lcit expressions for a:nJOif3t and c?@,bc?t are obtained fro: the conditions cf sciv- 
ability of the eq';ations for !,M! and gW_1) respectively. 

We shail licit oursfives to constructing the first twc approximations tc the function g 
using known results /ll/ of solving Ao1tzmar.n s eouation (1.6) by the CE method. Let us 
intrcduce the notation 8['~'@, (1. r)'Bf = Sz' [Q, (1): r]. We shall write the Navier-Stokes equations 
in tt,e form 

S‘jbstituting 
_' apiroximaticns tc 

!2.i! ant i2.2‘ intc (1.73, we obtain the equations 
the functicn g 

iz ? J’ I!“‘; xi] g”’ = O 

(2.5) 

fcr the first three 

(2.6) 

(2.7) 

(2.8) 

The conditions of solvability of (2.7: and (2.6) (the orthogonality of their right sides 
with respect to the phase subspace stretched over the complete system (1.3) of the additive 
collision invariants) uniquely define the form 0 f the first two terms on the right sides cf 
Eqs.(2.4) for b. We note here that since the right-hand side of (1.7) is not orthogonal tc 



444 

the phase subspace stretched over the additive collision invariants, the resulting equation 
for b in the N-th approximation is found to be dependent on f( N+l) of the (A' •F I)-th approxi- 
mation to the solution of Eloltzmann's equation. 

The following function represents a solution of C2.6) satisfying condition (2.3) at n = 0: 

12.9) 

Here we denote by 8~ the functional derivative S's@, (t. r), and the symbol (.; .,s) denotes 
the inner product of the functions within the brackets. 

Before attempting to solve (2.7), we shall obtain an expression for d~‘O~g’O’~d~. It can be 
shown that 

Indeed, taking into account relation (2.9) we can write 

dcp,f’O~ + I) 

Taking into account the fact that the hydrodynamic variables UJ and b are 
and also the equations 

we can confirm the valic?i:y cf the relation 

(a’o,‘.i,: ~~f!'O~, oaf’“‘) .A ([R’O”. L]‘: a@/ ‘O’, qp’) I (@O’; da) &AO’ 

Here we have used tensor notation fj'"" for the linearized Euler operatcr 
are given by the form;ia 

where ,I = (1; #‘O,‘.li anti 18’” ‘.bl * zre tenscrs wi<Q components 9 Oi' 10; rll b,, (1, rll r:'* 11.2 

(1.1(l) 

(2.11) 

independent, 

(2.12) 

whose components 

b,, if. TX. r:1 where p. Y = 1.1. 1. ., 4 and rhe repeated index b. denotes sumTatio:, fror 0 tc 4. 
From the equaticr, for .fn' ill/ it ic~llows that 

$i8'jiO',0~ __ _ixftO' _ J' f!'O‘) f" 

Let us 'Jse it in iT.12;. The resulting expression will yield an expression. fcr (G'%J'ot, 
d*! ,o (01 w'_ic!: will the:, be s.&atit-tee into !i.ll! . As a res-lt we obtain (Z.lOi . 

We shall use (2.1~' tc calcz1a~e b'"'li dt. The condition for (2.7) to be solvable has the 
fCK 

. 

Let us s,&stitute (2.15) incc (2,;O: and use the equation 

&.I [,?"'I!" =: J' [,f'"']&_P - J' [.f"'] d&J' 

Cancellin- ‘j the like terms we obtain 

&'@g'@ :dt = J’ [ (‘0’; q] (b; 8,,,f~‘J (s& da+” (~2)) 2 

J’ [,f’O’; q] (b; Bc#‘J) (rl}. &#~ (rz)) -i- 

Y 
$2 ? 

J’ [I!“; r,] gto, - (L(l); &f!“‘, &$f@)) 

{_‘.lli) 



Taking into account (2.16), we transform (2.7) into 

J' ]j'O'; zr] {g(l) - (b: a,jc*), 8,j'O')) + J' [j(O); t*] x 

(g(l)- (b; dQj@), daj”‘)) = I!! (t, ~1. 21) = 

(2.17) 

(L(l); d&J), d,j@j) - 6 (rl - r2) I [j(O), j(1) i j(l), j(O); zlr ts] 

Its solution, satisfying conditions (2.3) at n =i, has the form 

g(l) = (b, d@j(‘), d*j”“) -f- (b; d#“, d,j”‘) + g(l) (2.18) 

where P" (t, =1* 52) is given by the equation 

(J' [j(O); 211 + J’ U’O’; 221) g(l)’ - M (4 21, 22) (2.19) 

Let us now compute the second term on the right-hand side of Eq.(2.4) for b. We use the 

condition for (2.8) to be solvable 
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(2.20) 

6(r~- rl) 
s 

dvl dv& (q) qy (q) Z [j(O), j(*) + j(*), j(o) + j(l), j(l)] 

Taking into account (2.9), (2.18) and the equation given in /II/ for the second approxi- 
mation fc2) to the solution of Boltzmann's equation by the CE method, and carrying out trans- 
formations analogous to those used in deriving (2.101, we can obtain 

d’o’ 
-Lgm +_$t gco,, ~b-(8”)‘.b--[Oc’i,.b]‘)]; &,j(Ol;~,j(~l) + 

22 k&l! i (8’0), d,) g(l)’ $ (LCl’; r&j(l), &#‘I) +. 

i=1,2 

(L"': d,j(Q’, c&f” ‘) - 2 J’ [ fc”; z,] {(b; d,jcl), dc#“) + 
i=1.? 

(2.21) 

(b; d&o’, d,j’“)) - 
ix 

J’ I,/‘“‘; q] g(0) 
k1.2 

Let us substitute (2.21) intc (2.20). When comguting the integrals over the velocity 
space, we must take intc account the relations 

s 
dv$‘, (2) d,,F = 0, s 

dr, dv& (51) qtV (2:) g(l)’ = 0 

which follow frcm (2.3!, ~6. use the fact that $,, are the eigenfunctions of the operator 
J' 1j'O'l corresponding tc the fivefold degenerate zero eigenvalue. Here the ncn-zero contribu- 
ticn tc (2.20) is made by the frist three terms of (2.21\, AS a result we obtain 

(2.23) 

The formulas (2.9!, (2.18; together with (2.4) with JV= 1 for b, (2.15), (2.22) and the 
Nayier-Stokes equations (2.5: together determine the required class of normal soluticns of the 
kinetic equations (1.6j, (1.7: in the first-order perturbation theory using the CE method. 
The system of hydrodynamic equations fcr the spatial ccrrelators b,, (1, rlr r2), in this approxi- 
mation, takes the form 

db,,‘dt - &,.a [UJ; rJ bay -- Ai, a [UT rt.1 bra = HP, [Q rlr rtl (2.24) 

HLIV (r1, rz) = rt’.‘Y (r~$ rt) i I?‘, (nr r2) + L$ (rll r.0) + ~$4 (rlr rf) (2.25) 

It represents a system of "two-point" 
with the source terms H,u 

linearized inhomogeneous Navier-Stokes equations 
on the right-hand sides. In accordance with (2.251, (2.14), (2.20), 

(2.23) and (2.191, the terms depend on the special features of the small scale motions in an 
inhomogeneous gas, and vanish in the case of spatially homogeneous systems. In the latter 
case the trivial solutions of (2.24) are the only ones with any physical meaning. In the case 
of inhomogeneous systems the functions H,, represent heat sources of the hydrodynamic correla- 
tions. It should be noted that in the case of stationary states of an inhomogeneous gas Eqs. 
(2.24) differ from the corresponding equations of /5, 6/ in the structure of the inhomogeneous 
terms. In /5, 6/ the terms r(l) and Lo) appearing in (2.25) are not taken into account. 
They determine the sources of correlations representing special interest in the study of the 
fluctuations in the non-isothermal flows of a compressible gas. 

The probiem of constructing the normal solutions of (1.61, (1.9) of the form 
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G 0 f TT 21; t, d = jjo (Kn)“P [a, (f + T), /3 (t + 7, f); x1, q] (2.26) 

represents formally a speciai case of the problem discussed above. IkS CE solution in the 
first-order perturbation theory can be written at once, taking the results obtained into 
account, as follows: 

G = (B (t - 7; t); h~,w,!‘“’ (t i 7, IX), &~,j’o’ (t, ts)) + (fl (t t 7; t); dayl.,,P (t + 7l a)9 hD,r,P’ (t? 52)) (2.27) 

At the same time, the equations of dynamics of the two-line hydrodynamic correlators fi 
are identical with the linearized Navier-Stokes-Fourier equations 

@a%.:~ 11 + rr r,; t, rz) - A;.= (Qt (t + 7); r,l &XV (t -!- r, r1; (2.28) 
t, Q-0 

whose solutions should be considered, by virtue of (1.13), with the initial conditions determined 
by the solutions of (2.24), (2.5). Thus the Onsager principle determining the secular behaviour 
of the fluctuations in the macroscopic variables in an equilibrium system, can be generalized 
direclty to the domain of non-equilibrium, non-stationary, but stable hydrodynamic states of 
gaseous systems. 

3. Computation of the sources of lone-wave correlations in Eqs.(2,24).Let 
us consider the functional dependence of the inhomogeneous terms in Eqs.12.24) on the mean 
valuesof the hydrodynamic fields. To do this, we first express them in terms of the integral 
brackets traditional in kinetic theory /II/. 

Let us consider expression (2.23). Taking into account (2.31, we car; reduce it to the 
form (repeated Latin indices denote summation from 1 to 3) 

fF_, (r,, r2)= G-- li,> Py 
Drl$ 

"6,1K,.I,J-~n(r~)~ 
n(Q) dllF 

(3.j) 

6,,(K au, (?I) - Ii, 
1 a 

p. im br ( 49 - T n (n) 
1P )I CT11 *rip I 

K, us (rl, r2) = - 
s 

dr;l~&J.~ (31) qv (T*) cl,gcl!‘, cllj = lil;, - uly(?Q (3.2) 

The explicit form cf the function g"" is not required in computing the integrals (3.2). 
We shall shok. this as follows. Consider its equation (2.19). Multiplying both sides by 

Yv (22) and integrating over f'?, we obtain 

s 
du2yv (.Q) g’lj’ = 

f 
dv& (12) (J’ [.f’O’; z~])-~ x (3.3) 

{(L"'; a,,P(J& &,!'O (zp)) - 

d(rr - r2) I [,P:, f(*) - jol, f(O); 21. rrl) 

Let us multiply both sides cf this eq.;ation by f+qp (its) - ~,26,,y312) --k;~~~,d,~v4 ana 
integrate it over cl. T;cie second ano third term or. the left-hand side bcth vanish, and the 
first term yields (3.2:. T-z"ir.2 intc account on the right-hand side cf (3.3: the selfconj.ugate 
nature of the cperatcr (J'[j'o,])-I, we "ee zhe relation 

(J'[,f'"‘J)_' / CPTM - g 6,, - y C,b,,‘J = 

ksT ;; R&5,! I 
-7 i .-f,6,tj 

(.f,, = - ?1 (J’ [j 0’jJ-i Cp 
i 

+ - -g”) f 

B,, = - * (J’ [ ,fJ I)-’ (C,J, - -& CQ) j 

remembering a&c the condition of non-expandability of the hydrodynamic variabies. It CEG be 

shown here that all terms COntarning I,{" vanish. As a result we obtain 

Introducing 
phase functions 

K,, pv (rip r2) = - 6 (rl - ~2) 7 I kgT 1 dL.1 dw$v((,tp) x 

:,$ R,, (21) 6,: - A,(q) 6,,j I [f’? f’” f- f(l), f(o); 11, $31 

the definiticn of the modified integral brackets for the three arbitrary 
R (v), H (Y), G (1:) 

fR;H,G]*=-+S dvtR (vi) J f f”‘H. f““G + f(“jG, f@‘H] I= (3.4) 

-7 ’ s 
ds dvsH (vl)G (L:*) Z [f’o’, f(o)R + j(o)R, f(o); xl, q] 



we can write this expression in the form 
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(3.5) 

We transform expressions (2.14) and (2.20) for L(l) and LoI, using the formula 

which follows from formula (1.3) of /4/, and taking into account the definition of the standard 
integral bracket /ll/ 

[R;H]=-&l dvH (u) J’ (f(O); t] f(O)/‘? (u) (3.6) 

As a result we obtain 

L$(rl,Q= 6(rr- r()7? [h(l);$p$Y] (3.7) 

~$$(rr,r~)= 6(rl - rI) n* 
i 
[h(*);$fi&] + -&[vU*y; h(l), WI*) 

/&cl, =jW/j(O) 

Thus, further calculations can be carried usingthemethods employed in computing the 
integral brackets /ll/ developed thoroughly in the kinetic theory of gases. Omitting the 

details, we shall givetheresults of these calculations, restricting ourselves for simplicity 

to the first terms of the expansions of the function defining h(l) and A(*) in terms of Sonin 
polynomials (a Maxwell gas). Some of the components of the tensors (3.5), (3.7) are equal to 
zero in this approximation. The non-zero components have the form 

K,, i. (rl, rz) = 6 (71 - r2) $ Pi), K,,,o (r19 rt) = (1) 
6 (rl - f2) + qp (3.8) 

K,, IP (hr rd = 6 (rl - r2) & _.$ ,F~;~~~) 
p’o) 

L$‘(ri, r2) = 6 (rl - rl) p”‘l P$, 

5 bP’0’ (1) 
Lb’!(r,,r?)=6(r~-rr?)~-qp 

- Pnh 

(3.9) 

(3.10) 

$ qj”r’ip’o) j ,nqi’E ~ i 4 k,q;‘Y,Tl 

~(0’ = nkBT, 11) ,i (1) P;, =-2qEt,r,up, qp =- i.T,.T 
fP 

E,r = ‘I, G&J& -; &b,) - ‘.‘B&,& 

Here n,lU are the coefficient cf viscosity and thermal conductivity P,l(*) and qp(?J are 

the Barnett complements to the tangential stress tensor and thermal flux /ll/, 6,, is the 
Kronecker deita. 

From formulas (2.5), (3.1: and (3.81, (3.9), (3.103 it follows that the intensity of the 
thermal sources of long-wave correlations in the gas increase as its non-equilibrium character 
increases. The terms (3.9) in (2.25) are of zero order of magnitude relative to the Knudsen 
number, (3.11, (3.8) and (3.10) are of the first order. Formulas (3.10) describe the contribu- 
tion of the terms of the Barnett approximation for the mean values of thermodynamic fluxes, 
to the correlation sources. In the case of flows described satisfactorily by the Navier- 
Stokes-Fourier equations, these terms can be neglected in (2.25). Here we have 

H,,+.(rl, rl)= &&16(r1- rJ-& Pi> i [6,o&,+ (3.11) 

6,&l 6 h - rS + P$‘P,u, i [4,& -t 4AJ 6 (rl - rs) x 

1 (0) 
‘;; .p$- d” + 

[ 
& + 41w;VtUpl + 

[ 6,0&d &y V2, + &d% & VI,] 6 h - r2) m&’ + 

C 
6ho&p & V21+ LOW & VU] 6 (rl - r2) J$t’ + 
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Equations (2.24) with inhomogeneous terms (3.11) do not contain any non-equilibrium para- 
meters which characterize only the gaseous systems. Therefore they can be used to study non- 
equilibrium, large-scale fluctuations in fluid flows. 
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ASYMPTOTIC FORM OF SMALL DENSITY DIFFERENCES IN THE PROBLEM 
OF COHERENT PHASE TRANSFORMATIONS* 

M A GRINFEL'D . . 

Eq"aticns describing ;~n the iower approximation: the equilibrium con- 
figurations under heterogeneous, coherent phase transformations in an 
elastic, one-ccmponent medium, are derived for the asymptotic case of small 
density differences. Eoth phases are ass;lmed to be isotropic by virtue of 
the multiplicity and certain comptitational simplifications. It is shown 

that, to a first approximation, the equilibrium temperature of the non- 
hydrostatic, twc-phase configuration is identicai with the temperature of 
phase equi1ibri.L of the hydrostaticaily stressed phases in some reference 
configuraticn. In a higher approximation the system of equations of 
equilibrium obtained is identical with the equations of the classical 
linear theory of elasticity, although, on the whole, the problem remains 
essentially non-linear, since it contains an unknown boundary and certain 
boundary conditions on it, quadratic with respect to the displacement. 
The conditions obtained are further used to find the solutions of certain 
boundary value problems. 

The conditions of equilibrium obtained in /l, 2/ under coherent phase transformations 

with slippage, represent special boundary value problems for the equations of the non-linear 
theory of elasticity, with unknown boundaries. The presence of unknown boundaries of contact 
between the different phases aggravates the difficulties of the already complicated problem 
of describing the equilibrium configurations of non-linearly elastic materials (e.g. in the 

simplest problem of this type for a liquid system where the problem reduces to that of 
determining the equilibrium values of the pressures, temperture and phase masses,theeqJilibrium 
l Prikl.Matem.Mekhan.,49,4,582-592,198s 


